HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis.

نویسندگان

  • Huang-Lung Tsai
  • Yi-Hang Li
  • Wen-Ping Hsieh
  • Meng-Chun Lin
  • Ji Hoon Ahn
  • Shu-Hsing Wu
چکیده

Light regulates growth and developmental processes in plants via global transcriptome adjustment, translational control, and multilayered posttranslational modification of proteins. The transcriptional activation and repression of light-responsive genes has been well documented; however, the impact of posttranscriptional regulation on conveying light signals has been less addressed. Here, we examined whether optimal photomorphogenesis in Arabidopsis thaliana requires the proper biogenesis of small regulatory RNAs that play pivotal roles in the posttranscriptional regulation of gene expression. Arabidopsis carrying a mutation in HUA ENHANCER1 (HEN1), required for stabilization of small regulatory RNAs, showed defects in multiple aspects of photomorphogenic and skotomorphogenic development. HEN1 negatively regulated Arabidopsis photomorphogenesis. Light-activated HEN1 expression depended on the photoreceptors phytochrome A (phyA), phyB, cryptochrome 1 (cry1), and cry2 and key transcriptional regulators ELONGATED HYPOCOTYL5 (HY5) and HY5-HOMOLOG. We also demonstrate the involvement of the small regulatory RNAs miR157d and miR319 in modulating the expression of a positive regulator, HY5, and negative regulators TEOSINTE BRANCHED1, CYCLOIDEA AND PCF family proteins, respectively, for optimal photomorphogenic development in Arabidopsis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling.

Long-wavelength and low-fluence UV-B light is an informational signal known to induce photomorphogenic development in plants. Using the model plant Arabidopsis thaliana, a variety of factors involved in UV-B-specific signaling have been experimentally characterized over the past decade, including the UV-B light receptor UV resistance locus 8; the positive regulators constitutive photomorphogene...

متن کامل

The light-response BTB1 and BTB2 proteins assemble nuclear ubiquitin ligases that modify phytochrome B and D signaling in Arabidopsis.

Members of the Bric-a-Brac/Tramtrack/Broad Complex (BTB) family direct the selective ubiquitylation of proteins following their assembly into Cullin3-based ubiquitin ligases. Here, we describe a subfamily of nucleus-localized BTB proteins encoded by the LIGHT-RESPONSE BTB1 (LRB1) and LRB2 loci in Arabidopsis (Arabidopsis thaliana) that strongly influences photomorphogenesis. Whereas single lrb1...

متن کامل

Arabidopsis FHY1 protein stability is regulated by light via phytochrome A and 26S proteasome.

Phytochrome A (phyA) is the primary photoreceptor mediating responses to far-red light. Among the phyA downstream signaling components, Far-red Elongated Hypocotyl 1 (FHY1) is a genetically defined positive regulator of photomorphogenesis in far-red light. Both physiological and genomic characterization of the fhy1 mutants indicated a close functional relationship of FHY1 with phyA. Here, we sh...

متن کامل

Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response

MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of antho...

متن کامل

NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in Arabidopsis thaliana

Recent reports suggest that NF-Y transcription factors are positive regulators of skotomorphogenesis in Arabidopsis thaliana. Three NF-YC genes (NF-YC3, NF-YC4, and NF-YC9) are known to have overlapping functions in photoperiod dependent flowering and previous studies demonstrated that they interact with basic leucine zipper (bZIP) transcription factors. This included ELONGATED HYPOCOTYL 5 (HY5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 26 7  شماره 

صفحات  -

تاریخ انتشار 2014